Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.130
Filtrar
1.
Regen Biomater ; 11: rbae023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559647

RESUMO

Polyetherketoneketone (PEKK), a high-performance thermoplastic special engineering material, maintains bone-like mechanical properties and has received considerable attention in the biomedical field. The 3D printing technique enables the production of porous scaffolds with a honeycomb structure featuring precisely controlled pore size, porosity and interconnectivity, which holds significant potential for applications in tissue engineering. The ideal pore architecture of porous PEKK scaffolds has yet to be elucidated. Porous PEKK scaffolds with five pore sizes P200 (225 ± 9.8 µm), P400 (411 ± 22.1 µm), P600 (596 ± 23.4 µm), P800 (786 ± 24.2 µm) and P1000 (993 ± 26.0 µm) were produced by a 3D printer. Subsequently, the optimum pore size, the P600, for mechanical properties and osteogenesis was selected based on in vitro experiments. To improve the interfacial bioactivity of porous PEKK scaffolds, hydroxyapatite (HAp) crystals were generated via in situ biomimetic mineralization induced by the phase-transited lysozyme coating. Herein, a micro/nanostructured surface showing HAp crystals on PEKK scaffold was developed. In vitro and in vivo experiments confirmed that the porous PEKK-HAp scaffolds exhibited highly interconnected pores and functional surface structures that were favorable for biocompatibility and osteoinductivity, which boosted bone regeneration. Therefore, this work not only demonstrates that the pore structure of the P600 scaffold is suitable for PEKK orthopedic implants but also sheds light on a synergistic approach involving 3D printing and biomimetic mineralization, which has the potential to yield customized 3D PEKK-HAp scaffolds with enhanced osteoinductivity and osteogenesis, offering a promising strategy for bone tissue engineering.

2.
JBMR Plus ; 8(5): ziae026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38562913

RESUMO

Osteogenesis imperfecta (OI) is a heterogeneous spectrum of hereditary genetic disorders that cause bone fragility, through various quantitative and qualitative defects of type 1 collagen, a triple helix composed of two α1 and one α2 chains encoded by COL1A1 and COL1A2, respectively. The main extra-skeletal manifestations of OI include blue sclerae, opalescent teeth, and hearing impairment. Moreover, multiple genes involved in osteoblast maturation and type 1 collagen biosynthesis are now known to cause recessive forms of OI. In this study a multiplex consanguineous family of two affected males with OI was recruited for genetic screening. To determine the causative, pathogenic variant(s), genomic DNA from two affected family members were analyzed using whole exome sequencing, autozygosity mapping, and then validated with Sanger sequencing. The analysis led to the mapping of a homozygous variant previously reported in SP7/OSX, a gene encoding for Osterix, a transcription factor that activates a repertoire of genes involved in osteoblast and osteocyte differentiation and function. The identified variant (c.946C > T; p.Arg316Cys) in exon 2 of SP7/OSX results in a pathogenic amino acid change in two affected male siblings and develops OI, dentinogenesis imperfecta, and craniofacial anomaly. On the basis of the findings of the present study, SP7/OSX:c. 946C > T is a rare homozygous variant causing OI with extra-skeletal features in inbred Arab populations.

3.
J Biomater Appl ; : 8853282241243337, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561006

RESUMO

In this study, we evaluated the use of graphene oxide (GO) mixed with methyl methacrylate gelatin (GelMA) for the construction of a microenvironmental implant to repair bone defects in orthopedic surgery. A scaffold containing a GelMA/GO composite with mesenchymal stem cells (MSCs) was constructed using three-dimensional bioprinting. The survival and osteogenic capacity of MSCs in the composite bioink were evaluated using cell viability and proliferation assays, osteogenesis-related gene expression analysis, and implantation under the skin of nude mice. The printing process had little effect on cell viability. We found that GO enhanced cell proliferation but had no significant effect on cell viability. In vitro experiments suggested that GO promoted material-cell interactions and the expression of osteogenesis-related genes. In vivo experiments showed that GO decreased the degradation time of the material and increased calcium nodule deposition. In contrast to pure GelMA, the addition of GO created a suitable microenvironment to promote the differentiation of loaded exogenous MSCs in vitro and in vivo, providing a basis for the repair of bone defects.

4.
Proc Inst Mech Eng H ; : 9544119241242964, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561625

RESUMO

Constructing surface topography with a certain roughness is a widely used, non-toxic, cost-effective and effective method for improving the microenvironment of cells, promoting the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs), and promoting the osseointegration of grafts and further improving their biocompatibility under clinical environmental conditions. SIRT1 plays an important regulatory role in the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs). However, it remains unknown whether SIRT1 plays an important regulatory role in the osteogenic differentiation of BM-MSCs with regard to surface morphology. Polydimethylsiloxane (PDMS) with different surface morphologies were prepared using different grits of sandpaper. The value for BMSCs added on different surfaces was detected by cell proliferation assays. RT-qPCR and Western blotting were performed to detect SIRT1 activation and osteogenic differentiation of MSCs. Osteogenesis of MSCs was detected by alkaline phosphatase (ALP) and alizarin red S staining. SIRT1 inhibition experiments were performed to investigate the role of SIRT1 in the osteogenic differentiation of MSCs induced by surface morphology. We found that BM-MSCs have better value and osteogenic differentiation ability on a surface with roughness of PDMS-1000M. SIRT1 showed higher gene and protein expression on a PDMS-1000M surface with a roughness of 13.741 ± 1.388 µm. The promotion of the osteogenic differentiation of MSCs on the PDMS-1000M surface was significantly decreased after inhibiting SIRT1 expression. Our study demonstrated that a surface morphology with certain roughness can activate the SIRT1 pathway of MSCs and promote the osteogenic differentiation of BMSCs via the SIRT1 pathway.

5.
Osteoporos Int ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563961

RESUMO

The epidemiological data on osteogenesis imperfecta (OI) in Asia is limited. This study, representing the first comprehensive epidemiological investigation on OI in Taiwan, reveals high medical resource utilization and underscores the importance of early diagnosis to enhance care quality. INTRODUCTION: This study examines osteogenesis imperfecta, a hereditary connective tissue disorder causing pediatric fractures and limb deformities, using a nationwide database from Taiwan to analyze clinical features and medical burden. METHODS: The study identified validated OI patients from the Catastrophic Illness Registry in the National Health Insurance Research Database from 2008 to 2019. Demographic data and medical resource utilization were analyzed. A multivariate Cox model assessed the influence of sex, validation age, and comorbidities. RESULTS: 319 OI patients (M/F = 153/166) were identified, with 58% validated before age 20. Prevalence and incidence were 0.8-1.3/100,000 and 0.02-0.09/100,000, respectively, with higher rates in the pediatric demographic. In the study period, 69.6% of the patients had admission history, primarily to pediatric and orthopedic wards. The median admission number was 3, with a median length of stay of 12 days and a median inpatient cost of approximately 3,163 USD during the period. Lower limb fractures were the main reason for hospitalization. 57% of OI patients received bisphosphonate treatment. The leading causes of mortality were OI-related deaths, neurovascular disease, and cardiovascular disease. The median age of validation in the non-survival group was significantly higher compared to the survival group (33 vs. 14 years), and patients validated during childhood required more inpatient fracture surgeries than those validated during adulthood. CONCLUSION: This study provides comprehensive real-world evidence on the clinical characteristics and high medical resource utilization of OI patients in a low prevalence region like Taiwan. Early diagnosis is crucial for improving care quality and enhancing health outcomes.

6.
Imaging Sci Dent ; 54(1): 109-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38571770

RESUMO

A 54-year-old male patient presented for a periodic check-up at the dental clinic. A panoramic radiograph showed bilateral ossification of the stylohyoid ligament with an oval radiopacity on the right side. Cone-beam computed tomography revealed a well-defined, homogenous hyperdense entity from the lower third of the ossified stylohyoid ligament on the right side. The differential diagnosis of osteoma on the stylohyoid chain includes Eagle syndrome and benign tumors of the stylohyoid chain and adjacent structures. Osteoma rarely manifests in the neck. Even more infrequent are tumors originating from the stylohyoid chain, with only a single documented case of osteoma reported in the literature in 1993. Due to the asymptomatic status, no surgical intervention was advised, and the case would be monitored periodically. This case report describes the details of an osteoma that emerged from the stylohyoid chain, marking it as the second recorded occurrence of this highly rare condition.

7.
Clin Pediatr Endocrinol ; 33(2): 76-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572388

RESUMO

We report the case of a patient with osteogenesis imperfecta (OI) who developed pulmonary hemorrhage 4 d after pamidronate disodium (PA) administration, despite a relatively stable respiratory status. Bisphosphonates are introduced to reduce osteoclast activity and are now widely used in patients with OI. Bisphosphonates are typically well-tolerated in children, and the standard of care involves cyclic intravenous administration of PA. However, in practice, there is limited experience with the use of PA for severe OI during the neonatal period, and its safety remains uncertain. This report aimed to describe the respiratory events potentially associated with PA in a neonatal patient with OI type 2, suggesting that serious life-threatening complications of pulmonary hemorrhage may occur after PA administration. Further studies are required to assess the relationship between pulmonary hemorrhage and PA administration, aiming to enhance prophylaxis measures.

8.
Clin Exp Reprod Med ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38599888

RESUMO

Objective: Nicotinamide mononucleotide (NMN) is extensively utilized as an anti-aging agent and possesses anti-inflammatory properties. Lipopolysaccharide (LPS) activates Toll-like receptor 4, a process modulated by intracellular signaling pathways such as the Wnt/ß-catenin pathway. This study investigated the impact of NMN on osteogenesis in the presence of LPS. Methods: To elucidate the role of NMN in osteogenesis in the context of Gram-negative bacterial infection after LPS treatment, we cultured a mouse pre-osteoblast cell line (MC3T3-E1) and subsequently incubated it with NMN and/or LPS. We then evaluated osteogenic activity by measuring alkaline phosphatase activity, assessing gene expression and protein levels, and performing Alizarin Red S staining and immunocytochemistry. Results: MC3T3-E1 cells underwent successful differentiation into osteoblasts following treatment with osteogenic induction medium. LPS diminished features related to osteogenic differentiation, which were subsequently partially reversed by treatment with NMN. The restorative effects of NMN on LPS-exposed MC3T3-E1 cells were further substantiated by elucidating the role of Wnt/ß-catenin signaling, as confirmed through immunocytochemistry. Conclusion: This study showed that infection with Gram-negative bacteria disrupted the osteogenic differentiation of MC3T3-E1 cells. This adverse effect was partially reversed by administering a high-dose of NMN. Drawing on these results, we propose that NMN could serve as a viable therapeutic strategy to preserve bone homeostasis in elderly and immunocompromised patients.

9.
Cell Tissue Res ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602543

RESUMO

Synovial chondromatosis (SC) is a disorder of the synovium characterized by the formation of osteochondral nodules within the synovium. This study aimed to identify the abnormally differentiated progenitor cells and possible pathogenic signaling pathways. Loose bodies and synovium were obtained from patients with SC during knee arthroplasty. Single-cell RNA sequencing was used to identify cell subsets and their gene signatures in SC synovium. Cells derived from osteoarthritis (OA) synovium were used as controls. Multi-differentiation and colony-forming assays were used to identify progenitor cells. The roles of transcription factors and signaling pathways were investigated through computational analysis and experimental verification. We identified an increased proportion of CD34+ sublining fibroblasts in SC synovium. CD34+CD31- cells and CD34-CD31- cells were sorted from SC synovium. Compared with CD34- cells, CD34+ cells had larger alkaline phosphatase (ALP)-stained area and calcified area after osteogenic induction. In addition, CD34+ cells exhibited a stronger tube formation ability than CD34- cells. Our bioinformatic analysis suggested the expression of TWIST1, a negative regulator of osteogenesis, in CD34- sublining fibroblasts and was regulated by the TGF-ß signaling pathway. The experiment showed that CD34+ cells acquired the TWIST1 expression during culture and the combination of TGF-ß1 and harmine, an inhibitor of Twist1, could further stimulate the osteogenesis of CD34+ cells. Overall, CD34+ synovial fibroblasts in SC synovium have multiple differentiation potentials, especially osteogenic differentiation potential, and might be responsible for the pathogenesis of SC.

10.
Front Bioeng Biotechnol ; 12: 1360669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585711

RESUMO

Achieving osseointegration is a fundamental requirement for many orthopaedic, oral, and craniofacial implants. Osseointegration typically takes three to 6 months, during which time implants are at risk of loosening. The aim of this study was to investigate whether osseointegration could be actively enhanced by delivering controllable electromechanical stimuli to the periprosthetic bone. First, the osteoconductivity of the implant surface was confirmed using an in vitro culture with murine preosteoblasts. The effects of active treatment on osseointegration were then investigated in a 21-day ex vivo model with freshly harvested cancellous bone cylinders (n = 24; Ø10 mm × 5 mm) from distal porcine femora, with comparisons to specimens treated by a distant ultrasound source and static controls. Cell viability, proliferation and distribution was evident throughout culture. Superior ongrowth of tissue onto the titanium discs during culture was observed in the actively stimulated specimens, with evidence of ten-times increased mineralisation after 7 and 14 days of culture (p < 0.05) and 2.5 times increased expression of osteopontin (p < 0.005), an adhesive protein, at 21 days. Moreover, histological analyses revealed increased bone remodelling at the implant-bone interface in the actively stimulated specimens compared to the passive controls. Active osseointegration is an exciting new approach for accelerating bone growth into and around implants.

11.
BMC Prim Care ; 25(1): 119, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641795

RESUMO

BACKGROUND: Children and adolescents with complex medical issues need home care services; however, few studies have provided insight into the unmet home care needs of the families of patients with osteogenesis imperfecta (OI). In this study, we aimed to assess the home care needs of caregivers of children and adolescents with OI and the associated factors. METHODS: A self-administered questionnaire was administered online to 142 caregivers of patients with OI aged 3-17 years between May and October 2022 from 25 provinces in China. The questionnaire comprised 15 questions on demographic variables and 14 questions on home care needs. Chi-square analysis was used to compare group differences for categorical variables. Multivariate binary logistic regression analysis was conducted to examine predictors of caregivers' home care needs. RESULTS: The study findings indicated that 81.5% of caregivers had high home care needs. The three leading types of home care needs were helping the child carry out physical fitness recovery exercises at home (72.5%), understanding precautions regarding treatment drugs (72.5%), and relieving the child's pain (70.4%). OI patients' poor self-care ability (adjusted odds ratio = 5.9, 95% confidence interval = 1.8-19.0) was related to caregivers' high level of home care needs. CONCLUSIONS: The findings of this study suggest that future scientific research and nursing guidance should focus on OI patients' physical training, medication management, pain relief, fracture prevention, and treatment. In addition, caregivers of patients with poor self-care ability should receive special attention in the development of interventions. This study can help with addressing the unmet home care needs of caregivers of children and adolescents with OI. It is vital to develop a personalized intervention plan based on patients' self-care ability.


Assuntos
Serviços de Assistência Domiciliar , Osteogênese Imperfeita , Criança , Humanos , Adolescente , Cuidadores , Estudos Transversais , Osteogênese Imperfeita/terapia , Determinação de Necessidades de Cuidados de Saúde , Inquéritos e Questionários , Dor
12.
Int J Pharm ; : 124134, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643810

RESUMO

Long-term inflammation, including those induced by bacterial infections, contributes to the superfluous accumulation of reactive oxygen species (ROS), further aggravating this condition, decreasing the local pH, and adversely affecting bone defect healing. Conventional drug delivery scaffold materials struggle to meet the demands of this complex and dynamic microenvironment. In this work, a smart gelatin methacryloyl (GelMA) hydrogel was synthesized for the dual delivery of proanthocyanidin and amikacin based on the unique pH and ROS responsiveness of boronate complexes. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the co-crosslinking of two boronate complexes with GelMA. The addition of the boronate complexes improved the mechanical properties, swelling ratio, degradation kinetics and antioxidative properties of the hydrogel. The hydrogel exhibited pH and ROS responses and a synergistic control over the drug release. Proanthocyanidin was responsively released to protect mouse osteoblast precursor cells from oxidative stress and promote their osteogenic differentiation. The hydrogel responded to pH changes and released sufficient amikacin in a timely manner, thereby exerting an efficient antimicrobial effect. Overall, the hydrogel delivery system exhibited a promising strategy for solving infectious and inflammatory problems in bone defects and promoting early-stage bone healing.

13.
J Biomed Mater Res A ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623001

RESUMO

The 0106-B1-bioactive glass (BG) composition (in wt %: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, and 12.5 B2O3) has demonstrated favorable processing properties and promising bone regeneration potential. The present study aimed to evaluate the biological effects of the incorporation of highly pro-angiogenic copper (Cu) in 0106-B1-BG in vitro using human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as its in vivo potential for bone regeneration. CuO was added to 0106-B1-BG in exchange for CaO, resulting in Cu-doped BG compositions containing 1.0, 2.5 and 5.0 wt % CuO (composition in wt %: 37.5 SiO2, 21.6/ 20.1/17.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3, and 1.0/ 2.5/ 5.0 CuO). In vitro, the BGs' impact on the viability, proliferation, and growth patterns of BMSCs was evaluated. Analyses of protein secretion, matrix formation, and gene expression were used for the assessment of the BGs' influence on BMSCs regarding osteogenic differentiation and angiogenic stimulation. The presence of Cu improved cytocompatibility, osteogenic differentiation, and angiogenic response when compared with unmodified 0106-B1-BG in vitro. In vivo, a critical-size femoral defect in rats was filled with scaffolds made from BGs. Bone regeneration was evaluated by micro-computed tomography. Histological analysis was performed to assess bone maturation and angiogenesis. In vivo effects regarding defect closure, presence of osteoclastic cells or vascular structures in the defect were not significantly changed by the addition of Cu compared with undoped 0106-B1-BG scaffolds. Hence, while the in vitro properties of the 0106-B1-BG were significantly improved by the incorporation of Cu, further evaluation of the BG composition is necessary to transfer these effects to an in vivo setting.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38623938

RESUMO

The periosteum, rich in neurovascular networks, bone progenitor cells, and stem cells, is vital for bone repair. Current artificial periosteal materials face challenges in mechanical strength, bacterial infection, and promoting osteogenic differentiation and angiogenesis. To address these issues, we adjusted the electrospinning ratio of poly-ε-caprolactone and chitosan and incorporated Zn doping whitlockite with polydopamine coating into a nanofiber membrane. After a series of characterizations, optimal results were achieved with a poly-ε-caprolactone: chitosan ratio of 8:1 and 5% nanoparticle content. In vitro cell experiments and in vivo calvarial defect models, the sustained release of Mg2+ and Ca2+ promoted vascularization and new bone formation, respectively, while the release of Zn2+ was conducive to antibacterial and cooperated with Mg2+ to promote neurovascularization. Consequently, this antibacterial bionic periosteum with an angiogenesis-neurogenesis coupling effect demonstrates a promising potential for bone repair applications.

15.
Sci Rep ; 14(1): 7624, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561345

RESUMO

It is known that titanium (Ti) implant surfaces exhibit poor antibacterial properties and osteogenesis. In this study, chitosan particles loaded with aspirin, amoxicillin or aspirin + amoxicillin were synthesized and coated onto implant surfaces. In addition to analysing the surface characteristics of the modified Ti surfaces, the effects of the modified Ti surfaces on the adhesion and viability of rat bone marrow-derived stem cells (rBMSCs) were evaluated. The metabolic activities of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms on the modified Ti surfaces were also measured in vitro. Moreover, S. aureus was tested for its antibacterial effect by coating it in vivo. Using water as the droplet medium, the contact angles of the modified Ti surfaces increased from 44.12 ± 1.75° to 58.37 ± 4.15°. In comparison to those of the other groups tested, significant increases in rBMSC adhesion and proliferation were observed in the presence of aspirin + amoxicillin-loaded microspheres, whereas a significant reduction in the metabolic level of biofilms was observed in the presence of aspirin + amoxicillin-loaded microspheres both in vitro and in vivo. Aspirin and amoxicillin could be used in combination to coat implant surfaces to mitigate bacterial activities and promote osteogenesis.


Assuntos
Amoxicilina , Quitosana , Indóis , Polímeros , Ratos , Animais , Amoxicilina/farmacologia , Aspirina/farmacologia , Titânio/farmacologia , Quitosana/farmacologia , Osteogênese , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia
16.
J Pediatr Genet ; 13(1): 69-79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567169

RESUMO

Copy number variation in loss of 7q21 is a genetic disorder characterized by split hand/foot malformation, hearing loss, developmental delay, myoclonus, dystonia, joint laxity, and psychiatric disorders. Osteogenesis imperfecta caused by whole gene deletions of COL1A2 is a very rare condition. We report a Turkish girl with ectrodactyly, joint laxity, multiple bone fractures, blue sclera, early teeth decay, mild learning disability, and depression. A copy number variant in loss of 4.8 Mb at chromosome 7 (q21.2q21.3) included the 58 genes including DLX5, DLX6, DYNC1I1, SLC25A13, SGCE, and COL1A2 . They were identified by chromosomal microarray analysis. We compared the findings in our patients with those previously reported. This case report highlights the importance of using microarray to identify the genetic etiology in patients with ectrodactyly and osteogenesis imperfecta.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38570291

RESUMO

At present, stock linear distractors are used for internal maxillary distraction osteogenesis. However, the authors' research group has demonstrated, through an in silico analysis, that linear distraction leads to bone deformities and malocclusion, whereas helical distraction can yield ideal outcomes. A system for designing and manufacturing custom helical distractors has recently been developed, and the feasibility of these appliances now needs to be assessed. This study was, therefore, conducted to gain an initial insight into their feasibility. The study had two goals. First, it aimed to demonstrate, in an in vitro model, that the novel system of custom helical distraction can produce appropriate clinical outcomes. The second aim was to compare the performance of custom helical distractors with that of stock devices and hybrid devices (i.e., linear appliances that feature patient-specific footplates). Interpreting the results as trends, this study showed that the system of custom helical distraction resulted in in vitro outcomes that were superior to those obtained with stock and hybrid devices.

18.
World J Stem Cells ; 16(3): 267-286, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38577236

RESUMO

BACKGROUND: The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years, which also may lead to some complications such as alveolar bone resorption or tooth root resorption. Low-intensity pulsed ultrasound (LIPUS), a noninvasive physical therapy, has been shown to promote bone fracture healing. It is also reported that LIPUS could reduce the duration of orthodontic treatment; however, how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear. AIM: To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement (OTM) model and explore the underlying mechanisms. METHODS: A rat model of OTM was established, and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections. In vitro, human bone marrow mesenchymal stem cells (hBMSCs) were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction, Western blot, alkaline phosphatase (ALP) staining, and Alizarin red staining. The expression of Yes-associated protein (YAP1), the actin cytoskeleton, and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA (siRNA) application via immunofluorescence. RESULTS: The force treatment inhibited the osteogenic differentiation potential of hBMSCs; moreover, the expression of osteogenesis markers, such as type 1 collagen (COL1), runt-related transcription factor 2, ALP, and osteocalcin (OCN), decreased. LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force. Mechanically, the expression of LaminA/C, F-actin, and YAP1 was downregulated after force treatment, which could be rescued by LIPUS. Moreover, the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment. Consistently, LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo. The decreased expression of COL1, OCN, and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS. CONCLUSION: LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis, which may be a promising strategy to reduce the orthodontic treatment process.

19.
Bone Rep ; 21: 101757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577251

RESUMO

Approximately half of bone fractures that do not heal properly (non-union) can be accounted to insufficient angiogenesis. The processes of angiogenesis and osteogenesis are spatiotemporally regulated in the complex process of fracture healing that requires a substantial amount of energy. It is thought that a metabolic coupling between angiogenesis and osteogenesis is essential for successful healing. However, how this coupling is achieved remains to be largely elucidated. Here, we will discuss the most recent evidence from literature pointing towards a metabolic coupling between angiogenesis and osteogenesis. We will describe the metabolic profiles of the cell types involved during fracture healing as well as secreted products in the bone microenvironment (such as lactate and nitric oxide) as possible key players in this metabolic crosstalk.

20.
EFORT Open Rev ; 9(4): 235-240, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579763

RESUMO

Brachymetatarsia involves a reduction in length of one or more metatarsals. The affected metatarsal is shortened by 5 mm or more, altering the normal metatarsal parabola. In addition to being an aesthetic deformity, it can present with pain due to transfer metatarsalgia. A possible association with genetic disorders needs to be investigated during clinical evaluation. Surgical treatment may involve a one-stage lengthening procedure or progressive distraction, each having its advantages and limitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...